
A Defeasible Deontic Logic for Pragmatic
Oddity

Guido Governatori

Data61, CSIRO, Australia

Silvano Colombo Tosatto

Data61, CSIRO, Australia

Antonino Rotolo

Alma Human AI, University of Bologna, Italy

Abstract

We introduce a variant of Deontic Defeasible Logic to handle the issue of Pragmatic
Oddity. The key idea is that a conjunctive obligation is allowed only when each in-
dividual obligation is independent from the violation of the other obligations. The
solution makes essential use of the constructive proof theory of the logic while main-
taining a feasible computational complexity.

Keywords: Pragmatic Oddity, Defeasible Deontic Logic

1 Introduction

A differentiator between norms and other constraints is that, typically, (legal)
norms can be violated. Moreover, normative systems contain provisions about
other norms that become effective when violations occur. Since the seminal
work by Chisholm [3] the obligations in force triggered by violations have been
dubbed contrary-to-duty obligations (CTDs). The treatment of CTDs has
proven problematic for formal (logical) representations of normative systems.
Accordingly, CTDs are the source for many paradoxes and the driver for the
development of many formalisms and deontic logics. The contribution in this
paper follows the tradition: we are going to propose an extension of a logic
(Defeasible Deontic Logic) that addresses the Pragmatic Oddity CTD paradox.

The problem of Pragmatic Oddity, introduced by Prakken and Sergot [11],
is illustrated by the scenario that when you make a promise, you have to keep
it. But if you do not, then you have to apologise. The oddity is that when you
fail to keep your promise, you have the obligation to keep the promise and the
obligation to apologise. In our view, what is odd, is not that the two obligations
are in force at the same time, but that if one admits for form a conjunctive

2 A Defeasible Deontic Logic for Pragmatic Oddity

obligation from the two individual obligations then we get an obligation that
is impossible to comply with. In the scenario, when the promise is broken, we
have the conjunctive obligation obligation to keep the promise and to apologise
for not having kept the promise.

The Pragmatic Oddity arises when we have a conjunctive obligation, i.e.,
O(a∧ b), derived from the two individual obligations (Oa and Ob) where one of
the conjuncts is a contrary-to-duty obligation triggered by the violation of the
other individual obligation, for example when ¬a entails that Ob is in force.

Most of the work on Pragmatic Oddity (e.g., [11,2]) focuses on the issue
of how to distinguish the mechanisms leading to the derivation of the two
individual obligations, and create different classes of obligations. Consequently,
the solution to the Pragmatic Oddity problem is to prevent the conjunction
when the obligations are from different classes. Accordingly, if the problem is to
prevent that a conjunctive obligation is in force when the individual obligations
are in force themselves, the simplest solution is to have a deontic logic that does
not support the aggregation axiom 1 :

(Oa ∧ Ob) → O(a ∧ b)

However, a less drastic solution, advocated by Parent and van der Torre [9,10],
is to restrict the aggregation axiom to independent obligations (meaning that
one obligation should not depend on the violation of the other obligation).

We are going to take Parent and van der Torre’s suggestion and propose
a simple mechanism in Defeasible Deontic Logic to guard the derivation of
conjunctive obligations. The mechanism guarantees that the obligations of a
conjunctive obligation are independent from the violations of the individual
obligations. The mechanism is founded on the proof theory of the logic.

2 Defeasible Deontic Logic

Defeasible Deontic Logic [5] is a sceptical computationally oriented rule-based
formalism designed for the representation of norms. The logic extends De-
feasible Logic [1] with deontic operators to model obligations and (different
types of) permissions and provides an integration with the logic of violation
proposed in [7]. The resulting formalism offers features for the natural and
efficient representation of exceptions, constitutive and prescriptive rules and of
compensatory norms. The logic is based on a constructive proof theory that
allows for full traceability of the conclusions, and flexibility to handle and com-
bine different facets of non-monotonic reasoning. In the rest of this section we
are going to show how the proof theory can be used to propose a simple and
(arguably) elegant treatment of the issue of Pragmatic Oddity.

We restrict ourselves to the fragment of Defeasible Deontic Logic that ex-
cludes permission and permissive rules, since they do not affect the way we han-
dle Pragmatic Oddity: Definitions 2.12 and 2.13, the definitions that describe
the mechanisms we adopt for a solution to Pragmatic Oddity, are independent

1 See, among others, [4].

Governatori, Colombo Tosatto and Rotolo 3

from any issue related to permission. The definitions be used directly in the
full version of the logic. Accordingly, we consider a logic whose language is
defined as follows.

Definition 2.1 Let PROP be a set of propositional atoms, O the modal op-
erator for obligation.

• The set Lit = PROP ∪ {¬p | p ∈ PROP} is the set of literals.

• The complement of a literal q is denoted by ∼q; if q is a positive literal p,
then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p.

• The set of deontic literals is DLit = {Ol,¬Ol | l ∈ Lit}.
• If c1, . . . , cn ∈ Lit, then O(c1 ∧ · · · ∧ cn) is a conjunctive obligation.

In the rest of the paper, when relevant to the discussion, we will refer to
elements of Lit as plain literals, and often we will use the unmodified term
‘literal’ to indicate either a plain literal or a deontic literal.

We introduce the compensation operator ⊗. This operator is used to build
chains of compensation called ⊗-expressions. The formation rules for well-
formed ⊗-expressions are:

(i) every literal l ∈ Lit is an ⊗-expression;

(ii) if c1, . . . , ck ∈ Lit, then c1 ⊗ · · ·⊗ ck is an ⊗-expression;

(iii) nothing else is an ⊗-expression.

In addition we stipulate that ⊗ obeys the following property (duplication and
contraction on the right):

n!

i=1

ai =
" k−1!

i=1

ai

#
⊗
" n!

i=k+1

ai

#

where there exists j such that aj = ak and j < k.
Given an ⊗-expression A, the length of A is the number of literals in it.

Given an ⊗-expression A⊗ b⊗C (where A and C can be empty), the index of
b is the length of A⊗ b. We also say that b appears at index n in A⊗ b if the
length of A⊗ b is n.

The meaning of a compensation chain

c1 ⊗ c2 ⊗ · · ·⊗ cn

is that Oc1 is the primary obligation, and when violated (i.e., ¬c1 holds), then
Oc2 is in force and it compensates for the violation of the obligation of c1.
Moreover, when Oc2 is violated, then Oc3 is in force, and so on until we reach
the end of the chain when a violation of the last element is a non-compensable
violation where the norm corresponding to the rule in which the chain appears
is not complied with.

We adopt the standard DL definitions of strict rules, defeasible rules, and
defeaters [1]. However, for the sake of simplicity, and to better focus on the

4 A Defeasible Deontic Logic for Pragmatic Oddity

non-monotonic aspects that DL offers, in the remainder we use only defeasible
rules and defeaters. Also, we have to take the obligation operator into account.

Definition 2.2 Let Lab be a set of arbitrary labels. Every rule is of the type

r : A(r) ↩→ C(r)

where

(i) r ∈ Lab is the name of the rule;

(ii) A(r) = {a1, . . . , an}, the antecedent (or body) of the rule, is the set of the
premises of the rule (alternatively, it can be understood as the conjunction
of all the elements in it). Each ai is either a literal, a deontic literal or a
conjunctive obligation;

(iii) ↩→∈ {⇒,⇒O,❀,❀O} denotes the type of the rule. If ↩→ is ⇒, the rule
is a defeasible rule, while if ↩→ is ❀, the rule is a defeater. Rules without
the subscript O are constitutive rules, while rules with such a subscript
are prescriptive rules.

(iv) C(r) is the consequent (or head) of the rule. It is a single literal for
defeaters and constitutive rules, and an ⊗-expressions for prescriptive de-
feasible rules.

As we will see, prescriptive rules are used to derive obligations.
Given a set of rules R, we use the following abbreviations for specific subsets

of rules:

• Rd denotes the set of defeasible rules in the set R;

• R[q, n] is the set of rules where q appears at index n in the consequent.
The set of rules where q appears at any index n is denoted by R[q];

• RO denotes the set of prescriptive rules in R, i.e., the set of rules with O
as their subscript;

• RC denotes the set of constitutive rules in R, i.e., R \RO.

The above notations can be combined. Thus, for example, RO
d [q, n] stands for

the set of defeasible prescriptive rules such that q appears at index n in the
consequent of the rule.

Definition 2.3 A Defeasible Theory is a structure D = (F,R,>), where F ,
the set of facts, is a set of literals and deontic literals, R is a set of rules and
>, the superiority relation, is a binary relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every
norm is modelled by some rules. The superiority relation is used for conflicting
rules, i.e., rules whose conclusions are complementary literals, in case both
rules fire. We do not impose any restriction on the superiority relation: it just
determines the relative strength between two rules.

Definition 2.4 A proof (or derivation) P in a defeasible theory D is a linear
sequence P (1) . . . P (z) of tagged literals in the form of +∂q, −∂q, +∂Oq, −∂Oq,

Governatori, Colombo Tosatto and Rotolo 5

+∂Oc1 ∧ · · · ∧ cm and −∂Oc1 ∧ · · · ∧ cm where P (1) . . . P (z) satisfy the proof
conditions given in Definitions 2.8–2.13.

The tagged literal +∂q means that q is defeasibly provable as an institutional
statement, or in other terms, that q holds in the normative system encoded by
the theory. The tagged literal −∂q means that q is defeasibly refuted by the
normative system. Similarly, the tagged literal +∂Oq means that q is defeasibly
provable in D as an obligation, while −∂Oq means that q is defeasibly refuted as
an obligation. For +∂Oc1∧ · · ·∧ cm the meaning is that the conjunctive obliga-
tion O(c1 ∧ · · · ∧ cm) is defeasibly derivable; and that a conjunctive obligation
O(c1 ∧ · · · ∧ cm) is defeasibly refuted corresponds to −∂O(c1 ∧ · · · ∧ cm). The
initial part of length i of a proof P is denoted by P (1..i).

The first thing to do is to define when a rule is applicable or discarded. A
rule is applicable for a literal q if q occurs in the head of the rule, all elements
in the antecedent have been defeasibly proved (eventually with the appropriate
modalities). On the other hand, a rule is discarded if at least one of the modal
literals in the antecedent has not been proved. However, as literal q might not
appear as the first element in an ⊗-expression in the head of the rule, some
additional conditions on the consequent of rules must be satisfied. Defining
when a rule is applicable or discarded is essential to characterise the notion of
provability for constitutive rules and then for obligations (±∂O).

Definition 2.5 Given a proof P , a rule r ∈ R is body-applicable at step P (n+1)
iff for all ai ∈ A(r):

(i) if ai = Ol then +∂Ol ∈ P (1..n);

(ii) if ai = ¬Ol then −∂Ol ∈ P (1..n);

(iii) if ai = O(c1 ∧ · · · ∧ cm) then +∂Oc1 ∧ · · · ∧ cm ∈ P (1..n);

(iv) if ai = l ∈ Lit then +∂l ∈ P (1..n).

A rule r ∈ R[q, j] is body-discarded at step P (n+ 1) iff ∃ai ∈ A(r) such that

(i) if ai = Ol then −∂Ol ∈ P (1..n);

(ii) if ai = ¬Ol then +∂Ol ∈ P (1..n);

(iii) if ai = O(c1 ∧ · · · ∧ cm) then −∂Oc1 ∧ · · · ∧ cm ∈ P (1..n);

(iv) if ai = l ∈ Lit then −∂l ∈ P (1..n).

Definition 2.6 Given a proof P , a rule r ∈ RO[q, j] such that C(r) = c1⊗· · ·⊗
cm is applicable for literal q at index j at step P (n+ 1) (or, simply, applicable
for q), with 1 ≤ j < m, in the condition for ±∂O iff
(i) r is body-applicable at step P (n+ 1); and
(ii) for all ck ∈ C(r), 1 ≤ k < j, +∂Ock ∈ P (1..n) and +∂∼ck ∈ P (1..n).

Conditions (i) represents the requirements on the antecedent stated in Defini-
tion 2.5; condition (ii) on the head of the rule states that each element ck prior
to q must be derived as an obligation, and a violation of such obligation has
occurred.

6 A Defeasible Deontic Logic for Pragmatic Oddity

Definition 2.7 Given a proof P , a rule r ∈ RO[q, j] such that C(r) = c1⊗· · ·⊗
cm is discarded for literal q at index j at step P (n + 1) (or, simply, discarded
for q), with 1 ≤ j ≤ m, in the condition for ±∂O iff
(i) r is body-discarded at step P (n+ 1); or
(ii) there exists ck ∈ C(r), 1 ≤ k < l, such that either −∂Ock ∈ P (1..n) or

+∂ck ∈ P (1..n).

In this case, condition (institutional) ensures that an obligation prior to q in
the chain is not in force or has already been fulfilled (thus, no reparation is
required).

We now introduce the proof conditions for ±∂ and ±∂O:

Definition 2.8 The proof condition of defeasible provability for an institu-
tional statement is
+∂: If P (n+ 1) = +∂q then
(1) q ∈ F or

(2.1) ∼q ∕∈ F and
(2.2) ∃r ∈ Rd[q] such that r is applicable for q, and
(2.3) ∀s ∈ R[∼q], either

(2.3.1) s is discarded for ∼q, or
(2.3.2) ∃t ∈ R[q] such that t is applicable for q and t > s.

As usual, we use the strong negation to define the proof condition for −∂

Definition 2.9 The proof condition of defeasible refutability for an institu-
tional statement is
−∂: If P (n+ 1) = −∂q then
(1) q /∈ F and

(2.1) ∼q ∈ F or
(2.2) ∀r ∈ Rd[q]: either r is discarded for q, or
(2.3) ∃s ∈ R[∼q], such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) ∀t ∈ R[q] either t is discarded for q or not t > s.

The proof conditions for ±∂ are the standard conditions in defeasible logic, see
[1] for the full explanations.

Definition 2.10 The proof condition of defeasible provability for obligation is

+∂O: If P (n+ 1) = +∂Oq then
(1) Oq ∈ F or

(2.1) O∼q ∕∈ F and ¬Oq ∕∈ F and
(2.2) ∃r ∈ RO

d [q, i] such that r is applicable for q, and
(2.3) ∀s ∈ RO[∼q, j], either

(2.3.1) s is discarded for ∼q, or
(2.3.2) ∃t ∈ RO[q, k] such that t is applicable for q and t > s.

To show that q is defeasibly provable as an obligation, one must show either
that: (1) the obligation of q is a fact, or (2) q must be derived by the rules
of the theory. In the second case, three conditions must hold: (2.1) q does

Governatori, Colombo Tosatto and Rotolo 7

not appear as not obligatory as a fact, and ∼q is not provable as an obligation
using the set of deontic facts at hand; (2.2) there must be a rule introducing the
obligation for q which can apply; (2.3) every rule s for ∼q is either discarded
or defeated by a stronger rule for q.

The strong negation of Definition 2.10 gives the negative proof condition
for obligation.

Definition 2.11 The proof condition of defeasible refutability for obligation is

−∂O: If P (n+ 1) = −∂Oq then
(1) Oq ∕∈ F and either

(2.1) O∼q ∈ F or ¬Oq ∈ F or
(2.2) ∀r ∈ RO

d [q, i] either r is discarded for q, or
(2.3) ∃s ∈ RO[∼q, j] such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) ∀t ∈ RO[q, k], either t is discarded for q or t ∕> s.

Notice that, given the intended correspondence between Ol and +∂Ol, see Def-
inition 2.5, we will refer to “the derivation of Ol” when, strictly speaking, we
should use “the derivation of +∂Ol.

We are now ready to provide the proof condition under which a conjunctive
obligation can be derived. The condition essentially combines two require-
ments: the first that a conjunction holds only when all the conjuncts hold
(individually). The second requirement is that the derivation of one of the in-
dividual obligations does not depend on the violation of the other conjunct. To
achieve this, we determine the line of the proof when the obligation appears,
and then we check that the negation of the other elements of the conjunction
does not occur in the previous derivation steps.

Definition 2.12 The proof condition of defeasible provability for a conjunctive
obligation is

If P (n+ 1) = +∂Oc1 ∧ · · · ∧ cm, then
∀ci, 1 ≤ i ≤ m,
(1) +∂Oci ∈ P (1..n) and
(2) if P (k) = +∂Oc1 ∧ · · · ∧ cm, k ≤ n, then

∀cj , 1 ≤ j ≤ m and cj ∕= ci, +∂∼cj /∈ P (1..k).

Again, the proof condition to refute a conjunctive obligation is obtained by
strong negation from the condition to defeasibly derive a conjunctive obligation.

Definition 2.13 The proof condition of defeasible refutability for a conjunctive
obligation is
If P (n+ 1) = −∂Oc1 ∧ · · · ∧ cm, then
∃ci, 1 ≤ i ≤ m, such that either
(1) −∂Oci ∈ P (1..n) or
(2) if P (k) = +∂Oc1 ∧ · · · ∧ cm, k ≤ n, then

∃cj , 1 ≤ j ≤ m such that cj ∕= ci and +∂∼cj ∈ P (1..k).

In case of a binary conjunctive obligation the positive proof condition boils
down to

8 A Defeasible Deontic Logic for Pragmatic Oddity

+∂O∧: If P (n+ 1) = +∂Op ∧ q then
(1) +∂Op ∈ P (1..n) and
(2) +∂Oq ∈ P (1..n) and
(3) if P (k) = +∂Op (k ≤ n),then +∂∼q /∈ P (1..k) and
(4) if P (k) = +∂Oq (k ≤ n), then +∂∼p /∈ P (1..k).

Similarly, for the condition for −∂O∧.

Before moving on proving some theoretical results about the logic defined
we give some examples that illustrate the behaviour of the logic. In what
follows we use · · · ⇒ c to refer to an applicable rule for c where we assume that
the elements are not related (directly or indirectly) to the other literals used
in the examples.

Compensatory Obligations The first case we want to discuss is when the
conjunctive obligation corresponding to the Pragmatic Oddity has as conjuncts
an obligation and its compensation. This scenario is illustrated by the rule:

· · · ⇒O a⊗ b

In this case, it is clear that we cannot derive the conjunctive obligation of a and
b, since the proof condition that allows us to derive +∂Ob explicitly requires
that +∂∼a has been already derived (condition 2 of Definition 2.6). In this
case, it is impossible to have the obligation of b without the violation of the
obligation of a.

Contrary-to-duty The second case is when we have a CTD. The classical
representation of a CTD is given by the following two rules:

· · · ⇒O a ¬a ⇒O b

In this case, it is possible to have situations when the obligation of b is in
force without having a violation of the obligation of a, namely, when a is not
obligatory. However, as soon as we have Oa, we need to derive ¬a to trigger
the derivation of Ob (Definition 2.5).

Pragmatic Oddity via Intermediate Concepts The situations in the pre-
vious two cases can be easily detected by a simple inspection of the rules in-
volved; there could be more complicated cases. Specifically, when the second
conjunct does not immediately depends on the first conjunct, but it depends
through a reasoning chain. The simplest structure for this case is illustrated
by the following three rules:

· · · ⇒O a

¬a ⇒ b

b ⇒O c

Here to derive Oc, we need first to prove b. To prove b we require that ¬a has
already been proved.

Governatori, Colombo Tosatto and Rotolo 9

Negative Support In the previous case the support was through an interme-
diate concepts. However, given the non-monotonic nature of Defeasible Deontic
Logic, we can have cases where the support is not to directly derive the other
obligation from the violation, but the violation prevents the derivation of the
prohibition (or the permission of the opposite) of the other conjunct. This
situation is illustrated by the following set of rules: 2

· · · ⇒O a

· · · ⇒O b

c ⇒O ¬b
· · · ⇒ c

¬a ❀ ¬c

To derive Ob, we have to ensure that the rule for O¬b is discarded. This means
that c should be rejected (i.e., −∂c). We have two options, either the rule for c
is discarded, or the rule for ¬c is applicable. This implies that to prove +∂Ob
we have to prove first +∂¬a. Thus, one of the two elements of the conjunctive
obligation O(a ∧ b) depends on the violation of the other.

Pragmatic Un-pragmatic Oddity What about when there are multiple
norms both prescribing the contrary-to-duty obligation, and at least one of the
norms is not related to the violation of the primary norm?

r1 : · · · ⇒O a⊗ b

r2 : · · · ⇒O b

¬a

In this situation you can have a derivation:

(1) + ∂¬a fact

(2) + ∂Oa from r1

(2) + ∂Ob from r1 and (1) and (2)

where the derivation of Ob (+∂Ob) depends on the violation of the primary
obligation of r1. In this case, we cannot derive the conjunctive obligation of a
and b. However, there is an alternative derivation, namely:

(1) + ∂Oa from r1

(2) + ∂Ob from r2

(3) + ∂¬a fact

(4) + ∂Oa ∧ b from (1) and (2)

that demonstrates the independence of Ob from ¬a, given that the derivation
of ¬a occurs in a line after the line where +∂Ob is derived.

2 It is worth noting that, in the theory below, the rules for ¬b and ¬c can be either defeasible
rules or defeaters producing the same result as far as the derivation of O(a∧ b) is concerned.

10 A Defeasible Deontic Logic for Pragmatic Oddity

3 Independence

As we have discussed the idea of the proof conditions above is to ensure that
the individual obligations do not depend on the violations of the others. Ac-
cordingly, the question now is what does it mean that a formula is independent
from another formula. In classical logic, given a theory T , a formula A depends
on the formula B if T ∪B ⊢ A, but T \B ∕⊢ A. In Defeasible Deontic Logic, we
have to remove all possible reasons to conclude the literal; this means we have
to remove it from the facts and we have to remove the rules where it appears
in the head of the rule. Since we are interested in removing only non deontic
literals we can restrict the removal to the constitutive rules whose head is the
literal to be removed. Accordingly, we can define the following transformation.

Definition 3.1 Given a defeasible theory D = (F,R,>) and a literal l, the
Pragmatic Oddity Transformation of D based on l, noted as pot(D, l) is the
defeasible theory D′ = (F ′, R′, >′) satisfying the following conditions:

(i) F ′ = F \ {l};
(ii) R′ = R \R[l];

(iii) >′=> \ {(r, s) : r /∈ R′ ∨ s /∈ R′} .
The transformation is to create a theory similar to the original theory but,

as we said, without l. The condition on F is obvious. The second condition
ensures that the rules that can derive the literal are removed. Then the literal
is no longer derivable, since the resulting theory does not contain rules for the
literal anymore. Given that R′[l] = ∅, the following result is immediate.

Observation 1 Given a Defeasible Theory D and a literal l, −∂l is not deriv-
able in pot(D, l) .

It worth noting that we do not have to remove rules where the literal appears
in the antecedent of the rule. Such rules are immediately discarded. Similarly,
for prescriptive rules where the complement of the removed literal appears in
the head of the rules. Such rules are no longer applicable for any elements
appearing after the complement of the removed literal. Thus if you have a rule
with the ⊗-chain c1 ⊗ · · · ⊗ cn ⊗ ¬l ⊗ cn+1 · · · , the rules in RO[c,m] for any
m ≥ n+ 1 are not applicable. Remember, that to derive +∂Ocn+1 we have to
prove both +∂O¬l and +∂l. The transformation pot is then extended to the case
of a (finite) set of literals L = {l1, . . . , ln} by applying the transformation to
all the literals in L; thus pot(D,L) = pot(· · · (pot(D, l1), · · · ln) for an arbitrary
sequence of all the elements in L.

We can now specify when a (deontic) literal is independent from a set of
plain literals in Defeasible Deontic Logic

Definition 3.2 Given a defeasible theory D, a set L of plain literals and a
literal m, m is independent from L iff m is defeasibly provable in D and in
pot(D,L).

We can now show that the condition (2) in the proof conditions for a con-
junctive obligation ensures the independence of the obligations from the viola-

Governatori, Colombo Tosatto and Rotolo 11

tions. However, before proving this result we have to recall a general property
about Defeasible (Deontic) Logic: First of all a defeasible theory is consis-
tent if F does not contain a literal l and its complement ¬l. Second, given
a logical formula expressing a proof condition the strong negation of the for-
mula/conditions is obtained by replacing every occurrence of a positive proof
tag with the corresponding negative proof tag, replacing conjunctions with dis-
junctions, disjunctions with conjunctions, existential with universal and univer-
sal with existential. It is immediate to observe that all negative proof conditions
given in this section are the strong negation of the corresponding positive one
(and the other way around). If corresponding proof conditions are defined us-
ing the principle of strong negation outlined above, then, given a derivation, it
is not possible to have that the literal (conjunctive obligation) is both derivable
and refutable in the same derivation.

Proposition 3.3 [6] Given a consistent defeasible theory D, a derivation P ,
a literal l, and proof tag # ∈ {∂, ∂O} it is not possible that +#l,−#l ∈ P .

Armed with this result we can prove the result linking independence and
the proof conditions for conjunctive obligations.

Proposition 3.4 Given a consistent defeasible theory D, a deontic literal m
and a set L of plain literals. m is independent from L iff there is a derivation
P in D such that

• P (n) = +∂Om and

• ∀l ∈ L, +∂l /∈ P (1..n).

4 Complexity

In this section, we are going to study the computational complexity of the
problem of computing whether a conjunctive obligation is derivable from a
given defeasible theory. To this end, we adapt the algorithm proposed in [5]
to compute the extension of a defeasible theory, where the computation of the
extension is linear in the size of the theory. The algorithm is based on a series
of transformations that reduce the complexity of the theory, by either removing
elements from rules when some elements are provable, and removing rules when
they become discarded (and so no longer able to produce positive conclusions).
Using the idea in [5] the extension of a defeasible theory D is defined as follows:

Definition 4.1 Given a theory D, the literal extension of D is the tuple

〈∂+(D), ∂−(D), ∂+
O (D), ∂−

O (D)〉

where

• ∂+(D) is the set of literals appearing in D that are defeasibly provable as
institutional statements;

• ∂−(D) is the set of literals appearing in D that are defeasibly refutable as
institutional statements;

12 A Defeasible Deontic Logic for Pragmatic Oddity

• ∂+
O (D) is the set of literals appearing in D that are defeasibly provable as

obligations;

• ∂−
O (D) is the set of literals appearing in D that are defeasibly refutable as

obligations;

The aim of the paper is to determine when conjunctive obligations are
either provable or discarded. Accordingly, we have to extend the definition to
account for conjunctive obligation. However, if we want to maintain a feasible
computational complexity we have to limit the conjunctions we are going to
consider: given a set of n literals the set of all possible non logically equivalent
conjunctions that can be formed by the n literals contains 2n conjunctions;
hence, we cannot compute in polynomial time for such a set if any element is
derivable or refuted by the theory. However, we are going to show that for
each individual conjunction we can compute in polynomial time whether it is
derivable or refuted.

Definition 4.2 Given a defeasible theory D the conjunctive extension of the
theory is the tuple:

〈∂+(D), ∂−(D), ∂+
O (D), ∂−

O (D), ∂+
∧ (D), ∂−

∧ (D)〉

where ∂+(D), ∂−(D), ∂+
O (D) and ∂−

O (D) are as in Definition 4.1 and

• ∂+
∧ (D) is the set of conjunctive obligations appearing in D (i.e., c = O(c1∧

· · · ∧ cn) and ∃r ∈ R such that c ∈ A(r)) that are defeasibly provable in
D (Definition 2.12);

• ∂−
∧ (D) is the set of conjunctive obligations appearing in D that are defea-

sibly refutable in D (Definition 2.13).

The algorithm to determine the conjunctive extension of a theory is based
on the following data structure (for the full details we refer the reader to [5]).
We create a list of the atoms appearing in the theory. Every entry in the
list of atoms has an array associated to it. The array has ten cells, where
every cell contains pointers to rules depending on whether and how the atom
appears in the rule. The first cell is where the atom appears in the head of
a constitutive rule, the second where the negation of the atom appears in the
head of a constitutive rule, the third where the atom appears in the head of a
prescriptive rule, the fourth where the negation of atom appears in the head
of a prescriptive rule, the fifth where the atom appears in the body of a rule,
the sixth where the negation of the atom appears in the body of a rule, the
seventh where the atom appears as an obligation in the body of a rule, the
eighth where the negation of the atom appears as an obligation in the body of
a rule, the ninth where the atom appears as a negative obligation in the body
of a rule, and the tenth where the negation of the atom appears as a negative
obligation in the body of a rule. In addition, we maintain a list of conjunctive
obligations occurring in the theory, and for every conjunction we associate it
to the rules where it appears in the body.

Governatori, Colombo Tosatto and Rotolo 13

The algorithm works as follows: at every round we scan the list of atoms.
For every atom (excluding the entries for the conjunctions) we look if the atom
appears in the head of some rules. If it does not appears in any of the cells for
the heads, we can set the corresponding literals as refuted; and we can remove
rules, from corresponding cells. So, for example, given an atom p, if there are no
prescriptive rules for ¬p, then, we can conclude that the theory proves −∂O¬p;
accordingly, all rules where ¬O¬p occurs in the body are (body)-discarded,
and we can remove them from the data structure. Similarly, if there are no
constitutive rules for ¬p, then we can prove −∂¬p, and, then (i) all the rules
where it appears in the body are body-discarded, but also, for each rule r in
whose head p appears as an obligation, no elements following p in r can any
longer be derived using r and such elements are removed from the appropriate
cells. If an atom appears in the head of a rule, we determine (i) if the body of
the rule is empty, and (ii) for prescriptive rules, if the atom is the first element
of the head. If this is the case, then, the rule is applicable, and we check if there
are rules for the negation. If there are no rules for the negation, or the rules are
weaker than applicable rules, then the atom/literal is provable with the suitable
proof tag, and then we remove the atom/literal from the appropriate rules. We
repeat the above steps until we are no longer able to obtain new conclusions.
When, we are no able to derive new conclusion we turn our attention to the list
of the conjunctive obligations, where we invoke the following (sub)algorithm for
every conjunction c = O(c1 ∧ · · ·∧ cn) in the list (where C = {∼ci, 1 ≤ i ≤ n})

Algorithm 1 Evaluate Conjunctive Obligation

1: for i ∈ 1..n do
2: if ci ∈ ∂−

O (D) then
3: c ∈ ∂−

∧ (D) remove all rules r where c ∈ A(R)
4: Exit
5: end if
6: if ci ∈ ∂+

O (D) then
7: if ∀cj¬ci,∼cj ∈ ∂+(D) then
8: if ci ∈ +∂+

O (pot(D,C \ {∼ci}) then
9: i := i+ 1

10: else c ∈ ∂−
∧ (D) remove all rules r where c ∈ A(R)

11: Exit
12: end if
13: if ∃cj ∕= ci,∼ci ∈ ∂−(D) then
14: i := i+ 1
15: end if
16: end if
17: end if
18: Exit
19: end for
20: c ∈ ∂+

∧ (D), remove c from all rules r where c ∈ A(r)

14 A Defeasible Deontic Logic for Pragmatic Oddity

For every conjunction the algorithm iterates over the conjuncts. If a con-
junct is not provable as an obligation the conjunction is not provable (line 2–4).
If the conjunct is provable as an obligation, it checks whether the violations of
the other obligations are provable; if so, it has to check whether the obligation
of the conjunct is independent from the violations. To determine this, we can
repeat the whole algorithm with the the sub-theory obtained by the transfor-
mation pot(D,C \{ci}). If it is independent we continue with the next element
of the conjunction; otherwise, the conjunction is not derivable. Similarly, if
some of violations are not derivable we continue with the iteration. The con-
junction is provable when the iteration is successful for all the elements of the
conjunction.

At the end of the sub-routine, we return to the main algorithm, if there are
changes in the rules we repeat the process, otherwise the process terminates.

The algorithm outline above is sound and complete; hence, we can state the
following proposition. Essentially, the correctness of the algorithm depends on
Proposition 3.4.

Proposition 4.3 Given a defeasible theory D

• +∂l is defeasibly provable in D iff l ∈ ∂+(D);

• −∂l is defeasibly provable in D iff l ∈ ∂−(D);

• +∂Ol is defeasibly provable in D iff l ∈ ∂+
O (D);

• −∂Ol is defeasibly provable in D iff l ∈ ∂−
O (D);

• +∂Oc1 ∧ · · · ∧ cn is defeasibly provable in D iff c1 ∧ · · · ∧ cn ∈ ∂+
∧ (D);

• −∂Oc1 ∧ · · · ∧ cn is defeasibly provable in D iff c1 ∧ · · · ∧ cn ∈ ∂−
∧ (D).

As far as the computational complexity, [5] proves that the complexity of
computing the extension of a defeasible theory without conjunctive obligation
is linear in the size of the theory, where the size of the theory is determined
by the number of symbols in the theory, and hence if n and r stand for, re-
spectively, the number of atoms and the number of rules in the theory, the
complexity is in O(n ∗ r). For the complexity of computing the conjunctive
extension of a defeasible theory we have to take into account the complexity
of the Evaluate Conjunctive Obligation algorithm and the number of times we
have to compute it. This can be determined as follows: let m be the number
of conjunctive obligations in the theory, and k the number of conjuncts in the
longest conjunctive obligation. For each of them we have to compute the ex-
tension of pot(D,C), thus we have to perform O(m∗k ∗O(n∗r)) computations
on top of the computation of the extension (i.e., O((m+ n) ∗ r)).
Proposition 4.4 The conjunctive extension of a theory can be computed in
polynomial time.

Notice that the algorithm Evaluate Conjunctive Obligation can be use the
evaluate any conjunctive obligation not only the conjunctive obligations occur-
ring in a theory. All we have to do is to compute the conjunctive extension of
the theory and then evaluate the single conjunctive obligation, and as we have

Governatori, Colombo Tosatto and Rotolo 15

just seen this can be computed in polynomial time.

5 Summary

We have proposed an extension of Defeasible Deontic Logic able to handle the
so called Pragmatic Oddity paradox. The mechanism we used to achieve this
result was to provide a schema that allows us to give a guard to the derivation
of conjunctive obligations ensuring that each individual obligation does not
depend on the violation of the other obligation. The mechanism is given by
the proof theory of defeasible logic.

While the complexity of the logic is polynomial and hence feasible the al-
gorithm we propose is not optimal. Nonetheless, this is practical for most real
life applications, in which it is likely there will be few conjunctive obligations,
each with only a small number of conjuncts; however, the next step is to to
devise an optimal algorithm to implement the novel proof conditions.

Acknowledgments

A preliminary version of the paper presenting the idea of the logic was pre-
sented at Jurix 2019 [8]. We thanks the anonymous reviewers for their valuable
comments on an earlier version of the paper.

References

[1] Grigoris Antoniou, David Billington, Guido Governatori, and Michael J. Maher.
Representation results for defeasible logic. ACM Transactions on Computational Logic,
2(2):255–287, 2001.

[2] José Carmo and Andrew JI Jones. Deontic logic and contrary-to-duties. In Handbook
of philosophical logic, pages 265–343. Springer, 2002.

[3] Roderick M Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis,
24(2):33–36, 1963.

[4] Lou Goble. A logic for deontic dilemmas. Journal of Applied Logic, 3(3-4):461–483,
2005.

[5] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Simone Scannapieco.
Computing strong and weak permissions in defeasible logic. Journal of Philosophical
Logic, 42(6):799–829, 2013.

[6] Guido Governatori, Vineet Padmanabhan, Antonino Rotolo, and Abdul Sattar. A
defeasible logic for modelling policy-based intentions and motivational attitudes. Logic
Journal of the IGPL, 17(3):227–265, 2009.

[7] Guido Governatori and Antonino Rotolo. Logic of violations: A Gentzen system for
reasoning with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215,
2006.

[8] Guido Governatori and Antonino Rotolo. A computational model for pragmatic oddity.
In Micha!l Araszkiewicz and Vı́ctor Rodŕıguez-Doncel, editors, JURIX 2019: The 32th
international conference on Legal Knowledge and Information Systems, volume 332 of
Frontiers in Artificial Intelligence and Applications, pages 187–192, Amsterdam, 2019.
IOS Press.

[9] Xavier Parent and Leendert van der Torre. “sing and dance!”. In Fabrizio Cariani,
Davide Grossi, Joke Meheus, and Xavier Parent, editors, Deontic Logic and Normative
Systems, pages 149–165, Cham, 2014. Springer International Publishing.

[10] Xavier Parent and Leendert van der Torre. The pragmatic oddity in norm-based deontic
logics. In Guido Governatori and Jeroen Keppens, editors, Proceedings of the 16th edition

16 A Defeasible Deontic Logic for Pragmatic Oddity

of the International Conference on Artificial Intelligence and Law, pages 169–178. ACM,
2017.

[11] Henry Prakken and Marek J. Sergot. Contrary-to-duty obligations. Studia Logica,
57(1):91–115, 1996.

